Java 多线程编程

Java 给多线程编程提供了内置的支持。 一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。

多线程是多任务的一种特别的形式,但多线程使用了更小的资源开销。

这里定义和线程相关的另一个术语 - 进程:一个进程包括由操作系统分配的内存空间,包含一个或多个线程。一个线程不能独立的存在,它必须是进程的一部分。一个进程一直运行,直到所有的非守护线程都结束运行后才能结束。

多线程能满足程序员编写高效率的程序来达到充分利用CPU的目的。

一个线程的生命周期

线程是一个动态执行的过程,它也有一个从产生到死亡的过程。

  • 新建状态:
    • 使用 new 关键字和 Thread 类或其子类建立一个线程对象后,该线程对象就处于新建状态。它保持这个状态直到程序 start()这个线程。
  • 就绪状态:
    • 当线程对象调用了start()方法之后,该线程就进入就绪状态。就绪状态的线程处于就绪队列中,要等待JVM里线程调度器的调度。
  • 运行状态:
    • 如果就绪状态的线程获取 CPU资源,就可以执行run(),此时线程便处于运行状态。处于运行状态的线程最为复杂,它可以变为阻塞状态、就绪状态和死亡状态。
  • 阻塞状态:
    • 如果一个线程执行了sleep(睡眠)、suspend(挂起)等方法,失去所占用资源之后,该线程就从运行状态进入阻塞状态。在睡眠时间已到或获得设备资源后可以重新进入就绪状态。可以分为三种:
    • 等待阻塞:运行状态中的线程执行 wait() 方法,使线程进入到等待阻塞状态。
    • 同步阻塞:线程在获取 synchronized 同步锁失败(因为同步锁被其他线程占用)。
    • 其他阻塞:通过调用线程的 sleep()join() 发出了 I/O请求时,线程就会进入到阻塞状态。当sleep() 状态超时,join() 等待线程终止或超时,或者 I/O 处理完毕,线程重新转入就绪状态。
  • 死亡状态:
    • 一个运行状态的线程完成任务或者其他终止条件发生时,该线程就切换到终止状态。

线程的优先级

每一个 Java线程都有一个优先级,这样有助于操作系统确定线程的调度顺序。

Java 线程的优先级是一个整数,其取值范围是 1 (Thread.MIN_PRIORITY ) - 10 (Thread.MAX_PRIORITY )

默认情况下,每一个线程都会分配一个优先级NORM_PRIORITY(5)

具有较高优先级的线程对程序更重要,并且应该在低优先级的线程之前分配处理器资源。但是,线程优先级不能保证线程执行的顺序,而且非常依赖于平台。

创建一个线程

Java 提供了三种创建线程的方法:

  • 通过继承 Thread 类本身;
  • 通过实现 Runnable 接口;
  • 通过实现Callable接口创建线程。

通过实现 Runnable 接口来创建线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class RunnableDemo implements Runnable {
private Thread t;
private String threadName;

RunnableDemo( String name) {
threadName = name;
System.out.println("Creating " + threadName );
}

public void run() {
System.out.println("Running " + threadName );
try {
for(int i = 4; i > 0; i--) {
System.out.println("Thread: " + threadName + ", " + i);
// 让线程睡眠一会
Thread.sleep(50);
}
}catch (InterruptedException e) {
System.out.println("Thread " + threadName + " interrupted.");
}
System.out.println("Thread " + threadName + " exiting.");
}

public void start () {
System.out.println("Starting " + threadName );
if (t == null) {
t = new Thread (this, threadName);
t.start ();
}
}

public static void main(String[] args) {
RunnableDemo R1 = new RunnableDemo( "Thread-1");
R1.start();

RunnableDemo R2 = new RunnableDemo( "Thread-2");
R2.start();
}
}

通过继承Thread来创建线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class ThreadDemo extends Thread {
private Thread t;
private String threadName;

ThreadDemo( String name) {
threadName = name;
System.out.println("Creating " + threadName );
}

public void run() {
System.out.println("Running " + threadName );
try {
for(int i = 4; i > 0; i--) {
System.out.println("Thread: " + threadName + ", " + i);
// 让线程睡眠一会
Thread.sleep(50);
}
}catch (InterruptedException e) {
System.out.println("Thread " + threadName + " interrupted.");
}
System.out.println("Thread " + threadName + " exiting.");
}

public void start () {
System.out.println("Starting " + threadName );
if (t == null) {
t = new Thread (this, threadName);
t.start ();
}
}
}

public class TestThread {

public static void main(String args[]) {
ThreadDemo T1 = new ThreadDemo( "Thread-1");
T1.start();

ThreadDemo T2 = new ThreadDemo( "Thread-2");
T2.start();
}
}

Thread 方法

序号 方法描述
1 public void start()
- 使该线程开始执行;Java 虚拟机调用该线程的 run 方法。
2 public void run()
- 如果该线程是使用独立的 Runnable 运行对象构造的,则调用该 Runnable 对象的 run 方法;否则,该方法不执行任何操作并返回。
3 public final void setName(String name)
- 改变线程名称,使之与参数 name 相同。
4 public final void setPriority(int priority)
- 更改线程的优先级。
5 public final void setDaemon(boolean on)
- 将该线程标记为守护线程或用户线程。
6 public final void join(long millisec)
- 等待该线程终止的时间最长为 millis 毫秒。
7 public void interrupt()
- 中断线程。
8 public final boolean isAlive()
- 测试线程是否处于活动状态。

上述方法是被Thread对象调用的。下面的方法是Thread类的静态方法。
| 序号 | 方法描述 |
| —- | ———————————————————— |
| 1 | public static void yield() |
| - | 暂停当前正在执行的线程对象,并执行其他线程。 |
| 2 | public static void sleep(long millisec) |
| - | 在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),此操作受到系统计时器和调度程序精度和准确性的影响。 |
| 3 | public static boolean holdsLock(Object x) |
| - | 当且仅当当前线程在指定的对象上保持监视器锁时,才返回 true。 |
| 4 | public static Thread currentThread() |
| - | 返回对当前正在执行的线程对象的引用。 |
| 5 | public static void dumpStack() |
| - | 将当前线程的堆栈跟踪打印至标准错误流。 |

通过 Callable 和 Future 创建线程

  • 创建 Callable 接口的实现类,并实现 call()方法,该 call() 方法将作为线程执行体,并且有返回值。
  • 创建 Callable 实现类的实例,使用FutureTask类来包装 Callable 对象,该 FutureTask 对象封装了该 Callable对象的 call()
  • 使用 FutureTask 对象作为 Thread对象的 target 创建并启动新线程。
  • 调用 FutureTask 对象的 get()方法来获得子线程执行结束后的返回值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
public class CallableThreadTest implements Callable<Integer> {
public static void main(String[] args)
{
CallableThreadTest ctt = new CallableThreadTest();
FutureTask<Integer> ft = new FutureTask<>(ctt);
for(int i = 0;i < 100;i++)
{
System.out.println(Thread.currentThread().getName()+" 的循环变量i的值"+i);
if(i==20)
{
new Thread(ft,"有返回值的线程").start();
}
}
try
{
System.out.println("子线程的返回值:"+ft.get());
} catch (InterruptedException e)
{
e.printStackTrace();
} catch (ExecutionException e)
{
e.printStackTrace();
}

}
@Override
public Integer call() throws Exception
{
int i = 0;
for(;i<100;i++)
{
System.out.println(Thread.currentThread().getName()+" "+i);
}
return i;
}
}

创建线程的三种方式的对比

  • 采用实现 Runnable、Callable 接口的方式创建多线程时,线程类只是实现了 Runnable 接口或 Callable 接口,还可以继承其他类。
  • 使用继承 Thread 类的方式创建多线程时,编写简单,如果需要访问当前线程,则无需使用 Thread.currentThread() 方法,直接使用 this 即可获得当前线程。